Parametric Study on Buckling Behavior of Aluminum Alloy Thin-Walled Lipped Channel Beam with Perforations Subjected to Combined Loading
DOI:
https://doi.org/10.30684/etj.v39i1A.1710Abstract
The objective of the research presented in this paper is to investigate the buckling behavior of a perforated thin-walled lipped channel beam subjected to combined load. A nonlinear finite element method was used to analyze the buckling behavior of the beam. Experimental tests were made to validate the finite element simulation. Three factors with three levels for each factor were chosen to examine their influence on the buckling behavior of the beam and these factors are: the shape of holes, opening ratio and the spacing ratio of. The finite elements outcome was analyzed by using Taguchi method to identify the best set of three-parameter combinations for optimum critical buckling load. The analysis of variance technique (ANOVA) was implemented to determine the contribution of each parameter on buckling strength. Results showed that the mode of buckling failure of the perforated beam is lateral-torsional buckling and the hexagonal hole shape, =1.7 and = 1.3 were the best combination of parameters that gives the best buckling strength. The results also showed that the shape of holes is the most influential on buckling behavior of the perforated beam for this case of loading.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The author assigns to Engineering and Technology Journal with full title guarantee, all copyrights, rights in the nature of copyright, and all other intellectual property rights in the article throughout the world (present and future, and including all renewals, extensions, revivals, restorations and accrued rights of action). The Author represents that he/she is the author and proprietor of this Article and that this Article has not heretofore been published in any form. The Author warrants that he/she has obtained written permission and paid all fees for use of any literary or illustration material for which rights are held by others. The author agrees to hold the editor(s)/publisher harmless against any suit, demand, claim or recovery, finally sustained, by reason of any violation of proprietary right or copyright, or any unlawful matter contained in the submitted article.