surface roughness,metal removal Effect of Wire Diameter, Feeding Rate, Pulse (on/off) Time on Surface Roughness and Metal Removal Rate for Cr-Mo Steel (SCM425H) During Wire Electrical Discharge Machine (WEDM) Cutting Operation
DOI:
https://doi.org/10.30684/etj.v38i6A.524Abstract
Increase the demand to produce complex shapes with high quality and dimensional accuracy such as production aerospace, cars, die sinking has been leading to increase the demand to use the non- traditional cutting operations such as wire electro-discharge machine (WEDM) rather than using the traditional operations. An idea to understand the effect of wire diameter, wire feed, pulsing (on/off) time on surface roughness, and metal removal rate of Cr-Mo steel during wire electrical discharge machining was investigated. Two Steel alloy samples with dimensions of (60 x50 x 20)mm were cut into four rectangular spaces with (5x10x20)mm at one side of each sample using wire cut (EDM) machine with a wire diameter of 0.25 mm and feeding rate 2 m/min for sample 1 and a 0.3 mm diameter and 3 m/min feeding rate for sample 2. Pulse (on, off) time was (110, 50), (112, 52), (115, 55), (116, 57) corresponds to space 1, space 2, space 3, and space 4 in both steel block. Surface roughness and metal removal rate measurements were estimated. The results showed that wire diameter, feeding rate, and pulse (on, off) time is proportional with metal removal rate, while reversed with surface roughness. The wire diameter of 0.3 mm and a feeding rate of 3m/min enhanced better surface quality and productivity. Pulse (on, off) time is the most effective parameter. Best duration time was recorded at the values (116, 57).
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The author assigns to Engineering and Technology Journal with full title guarantee, all copyrights, rights in the nature of copyright, and all other intellectual property rights in the article throughout the world (present and future, and including all renewals, extensions, revivals, restorations and accrued rights of action). The Author represents that he/she is the author and proprietor of this Article and that this Article has not heretofore been published in any form. The Author warrants that he/she has obtained written permission and paid all fees for use of any literary or illustration material for which rights are held by others. The author agrees to hold the editor(s)/publisher harmless against any suit, demand, claim or recovery, finally sustained, by reason of any violation of proprietary right or copyright, or any unlawful matter contained in the submitted article.